Effects of architecture on the stability of thermosensitive unimolecular micelles.

نویسندگان

  • Alexander A Steinschulte
  • Bjoern Schulte
  • Stephan Rütten
  • Thomas Eckert
  • Jun Okuda
  • Martin Möller
  • Stefanie Schneider
  • Oleg V Borisov
  • Felix A Plamper
چکیده

The influence of architecture on polymer interactions is investigated and differences between branched and linear copolymers are found. A comprehensive picture is drawn with the help of a fluorescence approach (using pyrene and 4HP as probe molecules) together with IR or NMR spectroscopy and X-ray/light scattering measurements. Five key aspects are addressed: (1) synergistic intramolecular complexation within miktoarm stars. The proximity of thermoresponsive poly(propylene oxide) (PPO) and poly(dimethylaminoethyl methacrylate) (PDMAEMA) within a miktoarm star leads to complexation between these weakly interacting partners. Consequently, the original properties of the constituents are lost, showing hydrophobic domains even at low temperatures, at which all homopolymers are water soluble. (2) Unimolecular micelles for miktoarm stars. The star does not exhibit intermolecular self-assembly in a large temperature range, showing unimers up to 55 °C. This behavior was traced back to a reduced interfacial tension between the PPO-PDMAEMA complex and water (PDMAEMA acts as a "microsurfactant"). (3) Unimolecular to multimolecular micelle transition for stars. The otherwise stable unimolecular micelles self-assemble above 55 °C. This aggregation is not driven by PPO segregation, but by collapse of residual PDMAEMA. This leads to micrometer-sized multilamellar vesicles stabilized by poly(ethylene oxide) (PEO). (4) Prevention of pronounced complexation within diblock copolymers. In contrast to the star copolymers, PPO and PDMAEMA adapt rather their homopolymer behavior within the diblock copolymers. Then they show their immanent LCST properties, as PDMAEMA turns insoluble at elevated temperatures, whereas PPO becomes hydrophobic below room temperature. (5) Two-step micellization for diblock copolymers. Upon heating of linear copolymers, the dehydration of PPO is followed by self-assembly into spherical micelles. An intermediate prevalence of unimolecular micelles is revealed in a small temperature window between PPO collapse and self-assembly of PEO-b-PPO. Also for PPO-b-PDMAEMA, PPO segregation prevails after initial weak complexation, leading to micelles with a PPO core. Considerable amounts of water are entrapped within the collapsed PDMAEMA domains above 55 °C (skin effect), preventing PPO-PDMAEMA complexation within precipitating PPO-b-PDMAEMA. Further, collapsed PDMAEMA is rather polar as sensed by pyrene and 4HP. In summary, advanced macromolecular architectures can lead to an unprecedented intramolecular self-assembly behavior, where internal complexation prevents intermolecular aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic design and application of unimolecular star-like block copolymer micelles: a coarse-grained simulation study.

Unimolecular polymeric micelles have several features, such as thermodynamic stability, small particle size, biocompatibility, and the ability to internalize hydrophobic molecules. These micelles have recently attracted significant attention in various applications, such as nano-reactors, catalysis, and drug delivery. However, few attempts have explored the formation mechanisms and conditions o...

متن کامل

Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy.

A new type of multifunctional unimolecular micelle drug nanocarrier based on amphiphilic hyperbranched block copolymer for targeted cancer therapy was developed. The core of the unimolecular micelle was a hyperbranched aliphatic polyester, Boltorn H40. The inner hydrophobic layer was composed of random copolymer of poly(ε-caprolactone) and poly(malic acid) (PMA-co-PCL) segments, while the outer...

متن کامل

Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion

Ischemia-induced adhesion is very common after surgery, and leads to severe abdominal adhesions. Unfortunately, many existing barrier agents used for adhesion prevention have only limited success. The objective of this study is to evaluate the efficacy of biodegradable and thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) micelles for the prevention o...

متن کامل

A novel temperature-responsive micelle for enhancing combination therapy

A novel thermosensitive polymer p(N-isopropylacrylamide-co-poly[ethylene glycol] methyl ether acrylate)-block-poly(epsilon-caprolactone), p(NIPAAM-co-PEGMEA)-b-PCL, was synthesized and developed as nanomicelles. The hydrophobic heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin and the photosensitizer cyanine dye infrared-780 were loaded into the core of the micelles to achi...

متن کامل

Emission enhancement of conjugated polymers through self-assembly of unimolecular micelles to multi-micelle aggregates.

By using a cosolvent self-assembly approach, the emission of multi-micelle aggregates from star copolymer unimolecular micelles is enhanced greatly through restriction of concentration self-quenching and intermolecular aggregation of a conjugated polymer core, due to the existence of a PEG shell of HCP-star-PEG unimolecular micelles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2014